21 research outputs found

    Arachidyl Amido Cholanoic Acid Improves Liver Glucose and Lipid Homeostasis in Nonalcoholic Steatohepatitis Via AMPK and mTOR Regulation

    Get PDF
    BACKGROUND Arachidyl amido cholanoic acid (Aramchol) is a potent downregulator of hepatic stearoyl-CoA desaturase 1 (SCD1) protein expression that reduces liver triglycerides and fibrosis in animal models of steatohepatitis. In a phase IIb clinical trial in patients with nonalcoholic steatohepatitis (NASH), 52 wk of treatment with Aramchol reduced blood levels of glycated hemoglobin A1c, an indicator of glycemic control. AIM To assess lipid and glucose metabolism in mouse hepatocytes and in a NASH mouse model [induced with a 0.1% methionine and choline deficient diet (0.1MCD)] after treatment with Aramchol. METHODS Isolated primary mouse hepatocytes were incubated with 20 mu mol/L Aramchol or vehicle for 48 h. Subsequently, analyses were performed including Western blot, proteomics by mass spectrometry, and fluxomic analysis with(13)C-uniformly labeled glucose. For thein vivopart of the study, male C57BL/6J mice were randomly fed a control or 0.1MCD for 4 wk and received 1 or 5 mg/kg/d Aramchol or vehicle by intragastric gavage for the last 2 wk. Liver metabolomics were assessed using ultra-high-performance liquid chromatography-time of flight-MS for the determination of glucose metabolism-related metabolites. RESULTS Combination of proteomics and Western blot analyses showed increased AMPK activity while the activity of nutrient sensor mTORC1 was decreased by Aramchol in hepatocytes. This translated into changes in the content of their downstream targets including proteins involved in fatty acid (FA) synthesis and oxidation [P-ACC alpha/beta(S79), SCD1, CPT1A/B, HADHA, and HADHB], oxidative phosphorylation (NDUFA9, NDUFB11, NDUFS1, NDUFV1, ETFDH, and UQCRC2), tricarboxylic acid (TCA) cycle (MDH2, SUCLA2, and SUCLG2), and ribosome (P-p70S6K[T389] and P-S6[S235/S236]). Flux experiments with(13)C-uniformely labeled glucose showed that TCA cycle cataplerosis was reduced by Aramchol in hepatocytes, as indicated by the increase in the number of rounds that malate remained in the TCA cycle. Finally, liver metabolomic analysis showed that glucose homeostasis was improved by Aramchol in 0.1MCD fed mice in a dose-dependent manner, showing normalization of glucose, G6P, F6P, UDP-glucose, and Rbl5P/Xyl5P. CONCLUSION Aramchol exerts its effect on glucose and lipid metabolism in NASH through activation of AMPK and inhibition of mTORC1, which in turn activate FA beta-oxidation and oxidative phosphorylation.Supported by the National Institutes of Health Grant, No. R01CA172086; Plan Nacional of I+D, No. SAF2017-88041-R; Ministerio de Economia y Competitividad de Espana, No. SAF2017-87301-R; Asociacion Espanola contra el Cancer, No. AECC17/302; Ayudas Fundacion BBVA a equipos de Investigacion Cientifica 2018; Fondo Europeo de Desarrollo Regional, Ministerio de Economia y Competitividad de Espana, No. PGC2018-099857-BI00; Basque Government Grants, No. IT1264-19; Ministerio de Economia y Competitividad de Espana for the Severo Ochoa Excellence Accreditation, No. SEV2016-0644. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Contribution of Social Isolation, Restraint, and Hindlimb Unloading to Changes in Hemodynamic Parameters and Motion Activity in Rats

    Get PDF
    The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint), and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient

    Molecular Imaging of Cancer Using X‑ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes

    No full text
    X-ray computed tomography (CT) is a robust, precise, fast, and reliable imaging method that enables excellent spatial resolution and quantification of contrast agents throughout the body. However, CT is largely inadequate for molecular imaging applications due mainly to its low contrast sensitivity that forces the use of large concentrations of contrast agents for detection. To overcome this limitation, we generated a new class of iodinated nanoscale activity-based probes (IN-ABPs) that sufficiently accumulates at the target site by covalently binding cysteine cathepsins that are exceptionally highly expressed in cancer. The IN-ABPs are comprised of a short targeting peptide selective to specific cathepsins, an electrophilic moiety that allows activity-dependent covalent binding, and tags containing dendrimers with up to 48 iodine atoms. IN-ABPs selectively bind and inhibit activity of recombinant and intracellular cathepsin B, L, and S. We compared the in vivo kinetics, biodistribution, and tumor accumulation of IN-ABPs bearing 18 and 48 iodine atoms each, and their control counterparts lacking the targeting moiety. Here we show that although both IN-ABPs bind specifically to cathepsins within the tumor and produce detectable CT contrast, the 48-iodine bearing IN-ABP was found to be optimal with signals over 2.1-fold higher than its nontargeted counterpart. In conclusion, this study shows the synthetic feasibility and potential utility of IN-ABPs as potent contrast agents that enable molecular imaging of tumors using CT

    Nighttime (NT) and daylight (DL) spontaneous locomotor activity.

    No full text
    <p>Activity was measured in standard cages (BL) and during 14 days (d1–d14) for control (<b>A</b>), isolated-control (<b>B</b>), isolated (<b>C</b>), attached (<b>D</b>), and unloaded (<b>E</b>) rats. Data are given as a mean ± SEM. *- P < 0.05 <i>versus</i> basal level (BL).</p

    Heart rate and blood pressure during treadmill running.

    No full text
    <p>Heart rate (left) and mean arterial pressure (right) during a treadmill running test before (<b>PRE</b>) and after (<b>POST</b>) 14-days of control (<b>A</b>), isolation-control (<b>B</b>), isolation (<b>C</b>), attachment (<b>D</b>), and unloading (<b>E</b>). Cage: in experimental cage. TM1: in the treadmill cage, at rest, before exercise. EX: during treadmill running. TM2: in the treadmill cage, at rest, after exercise. Data are given as a mean ± SEM. *and # - P < 0.05 <i>versus</i> respective TM1 level.</p

    Heart rate changes.

    No full text
    <p>Nighttime (NT) and daylight (DL) heart rate measured in standard cages (BL) and during 14 days (d1–d14) for control (<b>A</b>), isolated-control (<b>B</b>), isolated (<b>C</b>), attached (<b>D</b>), and unloaded (<b>E</b>) rats. Data are given as a mean ± SEM. *- P < 0.05 <i>versus</i> basal level (BL).</p
    corecore